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Scaling and s-Channel Helicity Conservation via 
Optimal State Description of Hadron-Hadron 
Scattering 
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Two important physical laws of hadron-hadron scattering--the scaling of the 
angular distributions and s-channel helicity conservation--are proved using 
reproducing-kernel Hilbert space methods. All the results are obtained as special 
properties of optimal state dominance in hadron-hadron scattering. 

1. INTRODUCTION 

The present paper may be considered as a continuation and an extension 
of our previous results (Ion and Scutaru, 1985; Ion, 1985) in which the 
two-body scattering amplitude is assumed to be an element of a functional 
Hilbert space called reproducing kernel Hilbert space (RKHS) (see, e.g., 
Aronszajn, 1943, 1950; Bergman and Schiffer, 1953; Krein, 1940, 1949, 1963; 
Meschkowski, 1962; Parzen, 1967; Shapiro, 1971; Hitle, 1972; Higgins, 1972, 
1977). We have shown that: (i) the RKHS has many special properties that 
make it an adequate variational space for the description of the scattering 
in terms of an optimum principle; (ii) the notion of optimal scattering state 
(Ion, 1982a, b) and the reproducing kernel (RK) of  the RKHS associated 
to the scattering amplitude are the same; (iii) the expansion of the scattering 
amplitude in terms of optimal states is an important alternative to partial 
wave analysis; (iv) the essential characteristic features of the scattering as 
predicted by optimal state dominance are satisfied experimentally to surpris- 
ing accuracy (see Ion, 1982a,b, 1985) for all pp, pp, ~r• K=p scattering at 
all energies higher than 2 GeV; (v) the dual diffractive scattering (DDS) 
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and dual diffractive resonance (DDR) phenomena (Ion, 1981a,b; Ion and 
Ion-Mihai 1981a,b) are described in a unified manner using RKHS methods. 

On the other hand, it is interesting to note that RKHS methods were 
also used effectively in, e.g., the theory of coherent states (Bargmann, 1961; 
McKenna and Klauder, 1964; Klauder and Sadarshan, 1968; Perelomov, 
1972; Scutaru, 1977; Klauder and Skagerstam, 1985), group representations 
(e.g., Carey, 1977, 1978), stochastic quantum mechanics (e.g., Prugovecki, 
1983; All, 1984a,b; Schroeck, 1984), elementary particle physics (Cutkosky, 
1973; Okubo, 1974), and signal processing (e.g., Weinert, 1983). It was 
recognized (McKenna and Klauder, 1964; Klauder and Sudarshan, 1968; 
Perelomov, 1972) that the notion of the coherent state (Glauber, 1963a,b; 
McKenna and Klauder, 1964) and the reproducing kernel of the Hilbert 
space of wave functions are the same. In this respect the optimal state from 
the Hilbert space of helicity amplitudes is analogous to the coherent state 
from the Hilbert space of wave functions. 

In this paper two important physical laws of hadron-hadron scatter- 
ing--the scaling law of the angular distribution and the s-channel helicity 
conservation--are derived in terms of optimal states by using RKHS 
methods. In Section 2, we discuss briefly some essential definitions and 
results on the RKHS and give the extremal and scaling properties for the 
scattering of spinless particles. In Section 3, these properties as well as 
s-channel helicity conservation are established for the scattering of particles 
with arbitrary spins; conclusions are summarized in Section 4. 

2. SCALING PROPERTY OF OPTIMAL STATES 

Let f(x), x ~ [ - 1 ,  + 1], be the scattering amplitude of a two-body 
scattering process 

a+boa+b (1) 

where a and b are spinless hadrons and x---cos 0; 0 is the center-of-mass 
(CM) scattering angle. The normalization of f(x) is chosen such that the 
differential cross section (do'/dfl)(x), the elastic integrated cross section 
Orel , and the total cross section o'r are given by 

do-  d--~(x)=lf(x)]~, x~[-1 ,+1]  (2) 

f_ ~l d(r I_ -1 
O'el = 2 ~  -~(X)  dx=27r If(x) r dx 

1 1 

o" r =47rl  Imf(1)  

(3) 

(4) 
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where X = 1/p, with p the CM momentum. The energy dependence o f f (x ) ,  
(dtr/d~2)(x), rrej, and O'r was suppressed since we work at a fixed value of 
this variable. 

Let H be the Hilbert space of the scattering amplitude defined on the 
interval S---- [ - 1, + 1] with the inner product ( . , . ) ,  and the norm I1 II given 
by 

I +1 ( f  g) = f(x)~(x) dx, V f  g ~ g (5a) 
--1 

( f  f )= I f (x )  12 dx = flfll2 < oo (5b) 
1 

Now, we review briefly some of the definitions and results on the RKHS 
that we shall use in this investigation. 

Definition 1. A Hilbert space H of complex-valued functions defined 
on a set S is said to be RKHS if it enjoys the following reproducing property. 
There exists a complex-valued function K(x,y) on SxS ,  called the RK, 
such that 

(i) for any fixed y ~ S, Ky is in H (6a) 
(ii) Ky(x) = K(x, y) induces the reproducing property 

( f  K , ) = f ( y )  (6b) 

for each f c H, and y c S. 

Ky is called the reproducing element for the point y, while the totality 
of elements Ky is the RK of H. 

Definition 2. Let H be the RKHS of the scattering amplitude f of the 
process (1) and let K be the RK of H. The scattering state of the system 
(1) described by the amplitude 

Kr K(y,y)#O, f(y)#O, y e S  (7) fY =f(Y) K(y, y) '  

is called the optimal state for the point y. 

Corollary I. (Ion and Scutaru, 1985). If the scattering amplitude f is 
an element of the RKHS H with the RK K, then the functionals (2) and 
(3) must obey the inequality 

d• (Y)<- K(y, y) (8) 

the equality holding in (8) if and only if the scattering amplitude is the 
optimal state (7). 
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We note that most of the important properties of the RKHS were 
discussed recently by Ion (1985) in the context of the optimal state descrip- 
tion of hadron-hadron scattering. We saw that a number of essential 
characteristic features which are common to all optimal states (7) are direct 
consequences of the RK properties, while for any specific example of optimal 
states a corresponding set of additional properties holds true. 

Here we discuss one of the most important characteristic features of 
the scattering amplitude, the scaling property, which can be derived via 
optimal state dominance. 

Theorem 1. Let f (x)  be the scattering amplitude of the process (1) 
written in terms of the partial ampltude f as 

L 

f ( x ) =  E (2+l)ftPt(x), x ~ [ - 1 , + l ] ,  f t 6 C  (9) 
/ = 0  

where Pt(x), l = O, 1, . . . ,  L, are Legendre polynomials. Then: (i) the scatter- 
ing amplitude is an element of the RKHS H defined on the interval 
S --- [ - 1, + 1 ] if and only if L is finite. (ii) H possesses the reproducing kernel 

L 

K(x,y)= Z (l+�89 
I = O  

=�89 1) PL+I(X)PL(y)--PL(x)PL+1(y) (10a) 
x - y  

K(y, y) = �89 1)[[gL+I(Y)PL(y) -- PL(Y)PL+I(Y)] (10b) 

where PL(X) =- dPt(x)/ dx. 

Proof The first part of the theorem is obtained by observing that the 
evaluation functional f (y)  is bounded on H if L is finite. Indeed, 

If(y)[ -< [[fll (1+ 1/2)P~(y) -< Ilfll(L+ 1)/v~ 
l =  

So, by Theorem 1 (Ion and Scutaru, 1985), H is an RKHS with K(x, y) 
given by (10a), (10b). One can verify that Ky c H and also the reproducing 
property 

(f, Ky)= f(x)  K,(x) dx 
- 1  

1 L L ( - 1  

=- "~o~Y" ~o(21+ l)(2m+ l)fP"(Y) J_ P,(x)Pm(x) dx 2t 
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L 

= E (2l+ 1)fPt(y) = f ( y )  [] 
/=0  

Some of the main results obtained in this section can be summarized 
as follows: 

Theorem 2. Assume that the scattering amplitude f is an element of 
the RKHS H that possesses the RK (10a), (10b). 

(i) If  tr~l and (do'/df~)(y), y 6 [ - 1, + 1], are known from the experi- 
mental data, then any cut off L on the total angular momentum must obey 
the bound 

4r &r 
----(y)<--(L+I)[PL+~(y)Pr(y)-PL(y)PL+I(y)] (11a) 
~el 61) 

(ii) The equality holds in (11a) if and only i f f  is the optimal scattering 
amplitude (7), i.e., 

K(x, y) PL+~(x)PL(y) - PL(x)PL+I(Y) 
f (x)  = f ( y )  K(y, y-----~ =f(Y) (x --Y)[PL+~(Y)PL(Y) -- Pc(Y)PL+~(Y)] (1 lb) 

where L is the solution of the equation 

4~r &r 
- -  - -  (y) = 2K(y, y) -- (L+  1)[PL+I(Y)PL(y) -- PL(Y)PL+~(Y)] (1 lC) 
O'el dD 

(iii) The logarithmic slope of the angular distribution of the optimal 
state ( l lb )  at a point tz ~ - 2 p 2 ( 1 -  z), z E [ -  1, + 1], is given by 

b,.= l n ~ ( s , t )  ,=,~ 

= }{2{[[gL+I(Z)PL(y ) -- P l _ ( Z ) p L + I ( y ) ] ( 2  - - y )  

-- P L + I ( Z ) P L ( y )  + P L ( Z ) P L + I ( y ) }  

x{(z-y)[PL+,(z)PL(y)-PL(z)PL+~(y)]} -1 ( l ld )  

Proof The results (11a)-(11d) are obtained from Corollary 1, using 
equations (7), (8), and (10a), (10b). [] 

Corollary 2. Assume that the scattering amplitude f is an element of 
the RKHS H that possesses the RK (10a), (10b). 

(i) If  o'ej and crr are given, then any cutoff L on the total angular 
momentum must obey the bound 

(L+ 1)2- > o-~-/47r~2o'el (12a) 
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(ii) The equality holds in (12) if and only i f f  is the optimal amplitude 

f ( x )  = i o'7- K(x ,  1) 
47rX K(1, 1) 

o-T 1 PL+I(X) -- PL(X) 

4~r~ L + I  x - 1  

where 

1 
�9 o'7: ( L + l ) Z [ • + l ( x ) + P L ( x ) ]  (12b) = 14~r:~ 

L = integer{ (o'r/4~'xzo-e02 - 1} (12c) 

(iii) The forward diffraction peak of the optimal amplitude (12b), (12c) 
possesses the scaling property 

1 d~ [ J , ( r , ) ]  2 

(do-/dO)(1)  d - ~ ( x ) =  I_ r, I 

where 

/ 2 \ 7 i/2 
r, = 2 ( I t l b , ) ' / e = [ l t l {  ~ , - ; ~  2} | 

\ 7/" el 1 3  

for small r, (13a) 

(13b) 

(13c) 

and where b, is the logarithmic slope of the forward diffraction peak and 
Jl(~'t) is the Bessel function of first order. 

(iv) The backward diffraction peak of the optimal state (12b), (12c) 
possesses the scaling property 

1 do- [Jl(~ru)] 2 
( d o - / d O ) ( -  1) dO (x) = I_ r. _1 for small ~u (14a) 

where 

do- o-el 
_-z-~( - 1)  - ( 1 4 b )  
61U 4~r 

r , ,=2( lulb , , )  l /z= 2 [ u 1 4  (14c) 

and where u = -2p2(1 + x) is the usual u-transfer momentum, and b, is the 
logarithmic slope of the backward diffraction peak. 
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Proof The results (12a)-(12c) are derived from ( l la ) - ( l lc )  for y = 1 
and the usual inequality (Wick, 1943) 

O-T)2< do- (1) 
-dO.  

Then, equations (13a)-(13c) and (14a)-(14c) are obtained in a direct 
way using the properties of Legendre polynomials and the relation 

Pl(x)~Jo[(21+l)sin�89 for I>>1 and small angles �9 

Corollary 3. Assume that the scattering amplitude f of the process (1) 
is an element of the RKHS H that possesses the RK (10a), (10b). 

(i) If o-el and (do-/df~) (-1) are given, then any cutoff L on the total 
angular momentum must obey the inequality 

47r do- 
( L + l ) 2 -  > - - ( - 1 )  (15a) 

o-ej dO 

(ii) The equality holds in (15a) if and only if the scattering amplitude 
f is given by 

K(x, -1) 
f (x)  =f (  - 1) 

K ( - 1 ,  -1 )  

where 

( - 1 )  L PL+,(x)+PL(x) 
f (  - 1) - -  (15b) 

L + I  x + l  

L = integer/r4~r do- 
i. Lo-~l ~/--~ ( -- 1)1 1/2-- 1 } (15c) 

(iii) The forward diffraction peak of the optimal state (15b), (15c) 
possesses the scaling property 

1 do- IJ~(r,)]2 
(do-/da)(1)-~(x)=t.  r, .1 

where 

and 

for small r, (16a) 

do- 
dD, (1) = o-~---2~ 4~r (16b) 

{ ['4~ do- ]}~/2 r,=2(ltlbt)~/2= 2X2lt (16c) 
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(iv) The backward diffraction peak of the optimal state (15b), (15c) 
possesses the scaling property 

and 

1 do" (Jl(7"u)12 
(do-/dl~)(-  1) dl~ (x) = \ % / for small r. (17a) 

{ [4~r do- ]}1/2 
.r.=2(lulbu) 1/=-= x2ltl [ ~ ) - ~  (- 1)-1 (17b) 

Proof The results (15a)-(15c) are obtained from ( l la) ,  ( l lb )  since 
K ( - 1 ,  - 1 )  = (L+1)2/2,  while the optimal predictions (16a)-(16c) and 
(17a), (17b) are derived in a straightforward way using the properties of 
the Legendre polynomials. �9 

3. SCALING AND s-CHANNEL HELICITY CONSERVATION 

Now let us consider the process (1) in which the particles a and b 
have the spins sa and Sb, respectively. Then, for the description of the 
system (1) we use the helicity formalism of Jacob and Wick (1959). Let 

fEM(X)=(tX'tZ'bIF(s , t) I/xa/Zb) , [/x]------(/x~b; /X'~/Z~) (18) 

be the helicity amplitude of the process (1) with the initial helicit ies/~ and 
Izb and the final helicities ~ ' , /zg ,  where s and t are the squares of the CM 
energy and transfer momentum variables. The normalization is chosen such 
that for each helicity channel [/x] --- (~dxb; tz'./x~,) we have 

do-[M d----~(x)=lft'~l(x)12, x c [ - 1 , + l ]  (19a) 

I +1 o"~1 = 2~" Ift'~al2dx=2zrllft~a][ z (19b) 
--1 

while the unpolarized (differential, elastic, and integrated) cross sections 
are given by 

do" 1 do "[~] 
d--~ (x) = (2sa + 1)(2Sb + 1) r~J ~ (X), 

X~[ - -1 ,+ I ]  (20a) 

1 
O-T -- (2Sa + 1)(2Sb + 1) y~ o-~o] (20C) 

where [P-o] =-(/ZdXb; ~dXb) are the helicity-conserving channels. 

1 
o-el = (2Sa "JI- 1)(2Sb + 1) ~ o-~] (20b) 

It*] 
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We recall that, for each helicity-conserving channel [tZo], Imf~ 
and o-~ ol are related via the optical theorem 

o-~ ~ = 4~A Imf~o](1)  (21) 

Next, let us consider that each helicity amplitude f~.2 is an element of 
the RKHS H t"l defined on the interval [ -1 ,  +1] with the inner product 
( . , . )  and the norm [l" II given by 

- 

( f [ . l ,  g[.l) = ft"l(x)gE"](x) dx, 
1 

and 

f t . ] ,  gt.] e Hr.]  (22a) 

I 
+ l  

( f b , ] ,  f i g ] )  = I fE"~(x) I  = dx = II f [ ~ ] [ I  2 < ~ ( 2 2 b )  
- 1  

Definition 3. Let H ~ be the RKHS of the helicity amplitude f[~] of 
the process (1) and let K r"~ be the RK of H Et'l. The scattering state described 
by the helicity amplitude 

fyt~. j = ft~,](y) K[y ~1 Kt~,~(y ' y) ,  KE"~(y, y) ~ O, f t . ] (y )  # 0 (23) 

is called the optimal state of the channel I/z] for the point y. 
The following result describes the extremal property of the optimal 

state (23). 

Corollary 4. If each helicity amplitude f t . ]  is an element of the RKHS 
H t"l with RK K t"l, then the functionals (19a), (19b), (20a), (20b) must 
obey the bounds 

do-[~] o-[~] 
- ~  (y)<_~'e,2~ K~"1"~Y' y)' 

and 

y ~ [ -1 ,  +1] (24a) 

dtr (Y) < ~_~ K[~3(y ' Y), 
dO 

y ~ [ -1 ,  +1] (24b) 

for all [/z] for which K~"](y, y )~  0, respectively. The equality holds in 
(24a), (24b) if and only if the helicity amplitude fb . l  is the optimal state 
(23) for each channel [/z] in the case (24a) and for all channels [t~] in the 
case (24b). 

Theorem 3. Let f~.]  be the helicity amplitude of the process (1) 
described in terms of the partial amplitudes f}~'] by 

J 

ft~'l(x) = Y. (2j+ 1)ft"ld~.(x) (25a) 
Jmin 

where {d~.(x), x c [ -1 ,  +1]} is the set of rotation functions (see Rose, 1957; 
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Edmonds, 1957) and 

J.,i.  --- m a x { [ ~  I, I ~ I}; ~ = ~ o - ~ ,  v = tz '-/z~, (25b) 

Then: (i) f [ . l  is an element of RKHS H ~"1 defined on [-1,  +1] if and 
only if J is finite, and (ii) H ["~ possesses the reproducing kernel 

J 
Kb.](x,y) = ~. ( j + l )  d~(x)  d~.(y) 

Jmin 

[ ( J +  1) 2 -  ~L2] l/2[(J--~ - 1) 2 - v2] w2 

2(J+  1) 
J+l 

d . .  (y) (26a) xd"~ (x) d~.(y)-d~.(x)  J+' 
x - y  

J 

K["](Y, Y) = X (J+�89 2 
Jrnln 

[(J--t-- 1 ) 2 -  ~2]  l/2[(Y-+ 1 ) 2 -  b~211/2 

- 2 ( J +  1) [d~+a(y) dg(y) 
dJ (y) J + l  - d . .  (y)] (26b) 

Proof Indeed, from the reproducing property 

(ft,.I, K[y~,])=fE.](y) 

using Schwarz' inequality, we get 

[f[~J(Y) I--- IIf~"]IIEKE"](Y, y)],/2 
<- I l l  "all [(1 + 1) 2 -/2min] 1/2/~v/~ (27) 

since 

K[~(y,y)<-K[~~ 1) 2 - Jmin]2 

Hence, the evaluation functional f i l l ( y )  is bounded on H r~'] if J is 
finite. Then, H [~] is an RKHS with the RK K ~1 given by (26a), (26b), 
since the set {d~(y) ,  y e [-1,  +1]} is a complete orthonormal sequence in 
the R K H S  H [~']. �9 

Theorem 4. Assume that the helicity amplitude fez] of the process (1) 
is an element of the RKHS H ["] that possesses the RK K ["], (26a), (26b). 
Then: 

(i) If o-[~ l and (d~[~']/dO)(y), y e [ -1 ,  +1], are given, then any cutoff 
J~, on the total angular momentum j must obey the bound 

4~r dot [~] [(J.+l)2-p)]w2[(jz-F1)2-v2] '/2 
o@ 1 d ~ -  (y) -< 2(J~, + 1) 

"J +l J +1 x [ d ~ ,  (y) d ~ ( y ) - ' s  d ~  (y)] d,r~(y) (28) 
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(ii) The equality holds in (28) if and only i f f  [~] is the optimal amplitude 

K[~](x,y) 
fill(x) = f[U](y) K[~](y ' y) 

d~+l(x) d ~ ( y ) -  d~r d~+~(y) (29) 
=f[~](Y) (x-y)[d~+l(y) d ~ ( y ) -  d~(y) d ~ ( y ) ]  

where J~. is the solution of the equation 

4~- d~r [~] 
o'~ ] d---~ (y) = 2K[~](Y' y) 

- -  [(J/z -~ 1 ) 2 - l . s  "~- 1) 2-/ , ,211/2 

J ~ + l  

"J +1 • [d~ (y) d ~ ( y ) -  dJ~(y) d~+l(y)]  

(iii) 
state (29) at a point tz----2p2(1- z), z c [ -1 ,  +1], is given by 

b[~] dt r [  do "[~] "] ,~----~-_In~(x)]  
t = t  z 

= ~2{[dJ~+~(z) d~(y) - d~(z) d~C'(y)](z - y )  

- d~+'(z) d~(y)  + d~(z )  d ~ l ( y ) }  

x {(z-  y)[ dJ~+~(z) d~(y)-dJ~(z)  d~+l(y)]} - '  

(30) 

The logarithmic slope of the angular distribution of the optimal 

(31) 

Proof The proof of these results is similar to that of Theorem 2 and 
will be omitted. �9 

Corollary 5. Let f[~ol be the heticity amplitude of channel [/~o], and 
Set f[~'] ~ H t~~ where H ~'~ is an RKHS with the RK (26a), (26b). 

(i) If o'~ ~ and o-~o] are given, then any cutoff J on the total angular 
momentum j must obey the inequality 

(J + 1)2 __ [(o.~,~o])2/47r;~%.~fo] ] + 2 (32a) 

(ii) The equality holds in (32a) if and only if f[-o] is the optimal 
amplitude 

cr~eo] K[~J(x, 1) 
f[~o]( x ) = i - -  

4~';~ Kt~'~ 1) 

J+l J o-~eo] 1 d . .  ( x ) - d . . ( x )  
- i - -  (32b) 

4Ir~ J + l  x - 1  
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where 

J = integer (or half-integer){[((cr~oJ)2/4~rXZo'~ "o]) + tz 2] 1/2_ 1} (32c) 

(iii) The forward diffraction peak of the process (1) described by the 
optimal amplitude (32b), (32c) possesses the scaling property 

1 d~t"o] r ]= 
(do't~'~ dO (x )=  LJl(zt)rt .1 for small ~-, (33a) 

where 

and 

&r[~,o3 (o-~o1) 2 
d---O-- (1) = \ ~ - /  (33b) 

1/2 I F (O'[T/~~ J~2] } 1/2 (33C) 
~-, = 2(Itib~"oJ) = t itlL4~.o.~o-----q 

(iv) If/z,  =/x b =/z" =/x~,, the backward diffraction peak of the process 
(1) described by the optimal state (32b), (32c) possesses the scaling property 

1 dad~o] r j,(,.)]2 
(do't~'~ d---~ (x) = L r. j for small ~'. (33d) 

where 

and 

d~r[~'o ] o'~o~ 
- -  ( -1)  - (33e) 

df~ 47r 

(33f) 

Proof The results (i)-(ii) are obtained from (28)-(30) and the Wick-like 
inequality 

( ~[~o]\ 2 do.[~,o] 

since from (26b) 

Kt"ol(a, 1) = }[(J~ + 1 ) 2 - ~  2] 

The optimal predictions (33a)-(33c) and (33d)-(33f) are obtained in a 
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s t ra ight forward  w a y  

o )  : 

: 

: 

1269 

using the following properties of the rotation functions: 

( --  1)  j - ~  dJ_.~(O) = (-1)  j -"  dJ_~(O) (34a) 

( -1)  ~-~ d)_._~(x) = (-1)  ~-~ d+.(x) (34b) 

(_I~[ (j +_M)!(j- N)!]I/2 
"L(j+ N)!( j-M)!J 

/1 -x \ l~ -~ l " l  + x  \ I~-~l 
x / - -~- -  ) [ - - ~ - )  PJP_~t~I'I"+ ~F)(/) (34c) 

d~(x)~Jl._~l[(2j+l)sin O] f o r s m a l l 0 a n d j > > l  (34d) 

where o(~,~) �9 S-M are the Jacobi polynomials, and 

m=-  max[l /x l, lv]], N--min[ l /z l ,  lv]], A ~ � 8 9  
(34e) 

and Jl~_.F(x) are the Bessel functions of order ]/z - v l. [] 

Corollary 6. Let f t . l  be an element of the RKHS H t'~ that has the 
RK (26a), (26b), where I/z] here denotes only those channels foi" which 
/.t = -v .  

(ii) If o-[~ l and (do-t~I/df~)(-1) are given, then any cutoff J~. on the 
total angular momentum must obey the bound 

47r do -t~'l 
(J~ -b- 1)2 ~ o'[~]_ d ~ -  ( -1)  +/x2 (35a) 

(ii) The equality holds in (35a) if and only if f t .1 is the optimal 
amplitude 

Kt~<( x, -1)  
fE"?(x) =f~"l ( -1)  g [ u J ( - 1 , - 1 )  (35b) 

where 

j = integer (or half_integer){ [ 4o.t~l~l do.[M ]1/2 } df~ (-1)  +/x2 - 1  (35c) 

(iii) The backward diffraction peak of the process (1) described by the 
optimal amplitude (35b), (35c) possesses the scaling property 

1 d t r  E"] [Jl( 'ru)] 2 
(dtrE~,l/df~)(_l) -~  (x) = L r . .1 for small r.  (36a) 

where 

r~=2([ul bt$~)'/2= a2lul l d ~  - ( -1 ) -1  (36b) 
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(iv) If ~a =tzb and ' - / z . -  tz~, then the forward diffraction peak of the 
process (1) described by the optimal amplitude (35b), (35c) possesses the 
scaling property 

1 do -t"] [ Jl('rt)] 2 
(do, C'*t/da)(1) d ~  (x)= t. r, .1 for small r, (37a) 

where 

and 

- -  (1) - (37b) 
dO 4~r 

r,=2(ltlb~'*~) '/2= 2a2ltl ~E--~-1 d ~  ( - 1 ) - 1  (37c) 

Proof The results (35a), (35c) are obtained from equations (28)-(30) 
for y = - 1 ,  since K t " l ( - 1 , - 1 )  = l [ ( j ,  + 1)2_/x2] for all the channels I/x] 
for which/x = -v .  The predictions (36a), (36b) and (37a), (37b) are obtained 
using equations (35b), (35c), and (34d). �9 

Theorem 5. Assume that each helicity amplitude f[~*] of the process 
(1) is an element of the Hilbert space H ~ that possesses the reproducing 
kernel (26a), (26b). 

(i) Then, if O-el and ~r  [see equations (24b), (24c)] are given, any 
cutoff J on the total angular momentum must obey the inequality 

( j+  1)~_> ~r~- 
4.a.h 20..e I "}- (jtZ 2) (38a) 

1 
( I~2)=(2s~+l) (2Sb+l)  2 2 (38b) 

b*0] 

(ii) The equality holds in (43a), (43b) if and only if 

f t~](x) = 0 for all I/x] # [t*o] (39a) 

.o-~ ~ K["~ 1) 
f t " J ( x )  = ~ 4~'A Kt~~ 1) 

0@ ~ 1 . J + l , "  ,, dJla,(X) . a ~ ,  k x ) -  
- ,  - -  (39b) 

4~rA J + l  x - 1  

for all helicity-conserving channels [/Xo], where 

J= in tege r  (or h a l f - i n t e g e r ) ~ ( ~ + ( / ~ 2 ) ~  w2- 1~ - - -  - (39c) 
Lke4~'a-o-el / j 

where 
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and 

o-~o] : O-T -I- 4qr}~2o-el (<]db2> --/d, 2) (39d)  
O-T 

(iii) The forward diffraction peak of the process (1) described by the 
optimal amplitudes (39a), (39d) possesses the scaling property 

1 do" [-J , (r , ) ' ]  2 
(do-~all)(1) d-~ (x)= [ I t _  r, a for small r, (40a) 

where 

do" o-r + }~2 ~ (</ts _ (j[s 2>2) (40b)  
aa (1)= ~ o-T 

, =2(jtlb,)l/2= [itl( o-~s _a211 '/2 \4r ] J (40c) 
/ ~[~0l\ 23 

o- [~ ,o ] l  ~" r / t 
E r \4rr;~] J 1 [.ol 

S~(2Sa JV 1)(2sb + 1) [ o-r~--~d~ (1) ] (40d) 

(iv) Let no#0 be the number of channels with/x = - v = 0 .  Then the 
backward diffraction peak of the process (1) described by the optimal 
amplitudes (39a)-(39d) possesses the scaling property 

l do- [J,(ru)] 2 
(do-~dO)(-1) d~ (x)= I_ r. _1 for small % (41a) 

where 

do" no o-e~ ( . .  4rr~2o-el ) 
d---~(-1)-(2s.+l)(2sb+l) 4~- l - I - ~  <~2) (41b) 

r,=2(lulb.)l/=={2lulA2 { o2 r )},/2 ~k4qT"X2o-e! ~_ (j1s -- 1 (41c) 

Proof The results (38a), (38b), and (39a)-(39c) are obtained by using 
the Lagrange multiplier method (Wilde and Beightler, 1967; Einhorn and 
Blankenbecler, 1971) to solve the problem (I): minimize o-e~ subject to 
fE~lcH~] for all channels [/x] when o-r is given (see Ion, 1982b). We 
introduce the variational function 

J 
L = Y. Y. (2j+ 1)[(aJ~'l)2+ (r5~) 2] 

b*] b*l 

+~ (2so+1)(Zs~+1)~-~ Z ~ (2j+l)a~"o~ 
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where the a~ ~'1 and r~ ~'] denote the real and imaginary parts of the partial 
helicity amplitudes f ~ . ]  Thus, using the variational equations, we obtain 
the results (38a), (38b), and (39a)-(39c), since the stationary solution 
(*.[~]  %[~]  * ,j , ,.j , a)  of the problem (I) is given by 

~'~ ' ]  = O, * b ' ]  - -  * uj -Aa(5[~1[~o ] for all [.[<~j<-J 
~"~= h ~ = o  for all j---J+ 1 

where 

and 

O'T - -  0 . ~ o  ] 

U+i)2_.2_ ~ ~o~- (~o~)2 
4~rX (rol - 4rr;~2(r~f ~ 

Then, the results (iii) and (iv) are derived using equations (20a)-(20c), 
(34a)-(34e), (39a)-(39d), and 

d F do s176 ] ~.2 b~'ol----~-~ Lln ~-ff- (x)j ,=o---g [(J + I ) 2 - .  2- 1] 

:~2( o-~- 1) 
- 4  \ ~ 1 ~ - (  2)_ z_ 

and 

bt~ol = d [ ln  do-t~oa ] ~2 
- .=o=7U+1)  2 

- -  ~2  O"T 

only f o r .  = - v  = O, since (do't"o~/da)(-1) = 0 for all channels with m = v ~ 
0. Also, we have used the results 

d FKt~'~ 1) 

dx L~-~ ]  : = ,  

since 

1 "'J+l - d~.(1 
2 ( J+  1) [ d . .  (1) )] 

= ~([J + 1)2 _ . 2 _  1 ] 

d~,.(1) dZ 
: gx---~ [d~Ax)] I~=1 

. ( . -  1) + .  [j(j+ 1 ) - . ( .  +1)] 
2 2 

+ 8~[S(J + 1) - ( .  + 1) ( .  + 2)][S(J + 1) - . ( .  + 1)1 
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Remark 1. The model-independent results (12a) and (32a) were 
obtained by Rarita and Schwed (1958) and Ion (1982b), respectively. 

Remark2. The results (40a), (40b) include in a more general and exact 
form the scaling variables [tlo'~/O-el and [tlo-r introduced by Singh and 
Roy (1970), Cornille and Martin (1976), Dias de Deus (1973), and Buras 
and Dias de Deus (1974), since at high energies [see equations (39d), 
(40a)-(40d)] 

o-~eo] ~ o-r, d a  (1)~ S ~ I  

Remark 3. The scattering phenomena described by the optimal helicity 
amplitudes (39a)-(39d) are s-channel helicity-conserving phenomena. Their 
angular distributions have diffractive patterns very sensitive to the values 
of the optimal curoff parameter J and at high energies (J >> 1) possess the 
scaling properties (40a)-(40d) and (41a)-(41c). The idea that s-channel 
helicity conservation is a universal phenomenon associated with diffractive 
processes was proposed by Gilman (1970) as a speculation stimulated by 
the finding that s-channel helicity is conserved in the reaction yp ~ pOp 
(Ballam et al., 1970). Harari and Zarmi (1970) and Bialas et aL (1970) 
presented experimental evidence in support of this idea in ~rN scattering 
and in reactions involving isobar production. 

Corollary 7. Assume that each helicity amplitude f t , l  is an element of 
the RKHS H ["] that possesses the RK K E~], (26a), (26b). 

(i) If o-el and (do'/dfl)(-1) are given, then any cutoff J~ on the total 
angular momentum must obey the bound 

(j~,+ 1)2>4~r do- ( _ 1 ) + / 2  (42) 
o'el dO 

(ii) The equality holds in (42) if and only if ft"](x) is the optimal 
amplitude 

Kt"](x, 1) 
ft"](x) = f t " ] ( -1 )  Kt ,~ (_ l , -1 )  

= f ~ ] ( - 1 )  1 
J ~ + l  

-, +x d~%,(-1) -- dJ~(X) J +1 d~_~,(-1) d~_~,(x) 
• 

x + l  

(43a) 
J~,+l x + l  
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where 
47r do" 

J~ = integer (or half-integer){ [~-~l ~-~ (-1) + jx2] 1/2- 1} (43b) 

for all channels [Iz] for which/x = - v  [see equation (34a)]. 
(iii) The backward diffraction peak of the angular distribution of the 

process (1) described by the helicity amplitudes (43a), (43b) posesses the 
scaling property 

1 do. [J1(%)] 
(do./df~)(-1) d a  (x) = t. ru _1 for small r, (44a) 

where 

(-1) - 1 (44b) 

(iv) If no#0 is the number of channels [/x] with /x= v=0,  then 
the forward peak of the angular distribution of the process (1) described 
by the optimal scattering amplitudes (43a), (43b) possesses the scaling 
property 

1 do" [Jl(Tt)] 2 
(do./dl))(1) d ~  (x) = l_ rt .J for small r, (45a) 

where 

do- no ~rel (45b) 
(1) - (2sa + 1)(2Sb + 1) 4~ 

and ]},,2 
Lo"~i ~ (-1) - 1 (45c) 

Proof. The results (i) and (ii) are obtained from Theorem 2 of Ion 
(1985) for y = 1 when the RK is given by (26a), (26b). An important step 
here is the equality 

4 ~  do" 4~- do" ["1 
o"~--~ B--f~(-1)-o"~ 1 d ~  ( - 1 ) = ( J " + l ) 2 - t x 2 = 2 K t " l ( - l ' - l )  (45') 

for all channels [tz] with Iz = - v  for which KEel(-1,-1)  ~ 0. Then, the 
results (44a), (44b), and (45a)-(45c) are derived using the definitions (20a), 
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equation (45'), the property (34d), and the results 

A 2 
d I -dob ' ] (x) ] l~=o=_~_ ~ - ~ ( 1 )  

for any channel [~] with ~ = -v ,  and 

A2 

for each channel [IX] with/x = - v = 0  �9 

Corollary 8. Assume that each helicity amplitude f~.l is an element of 
the RKHS H ["1 with the RK K ~"2, (26a), (26b). 

(i) If ~rel and (&r/d~)(1) are given, then any cutoff J .  on the total 
angular momentum must obey the bound 

(J. + 1 )2 _> ~ dD(1)do" +/x 2 (46) 

(ii) The equality holds in (46) if and only if f~'](x) is the optimal 
amplitude 

Kt~'l(x, 1) 
ft"J(x) =ft"l(1) KE'a(1, 1 ) ) = f t " l ( 1 ) -  

where 

J +1 J 1 d~. (x)-d~.(x) 
J , ,+ l  x - 1  

(47a) 

~',= 2(Itlb,)l/2=[X21tl[~-~ (1)-l]} ~/2 

, , . .  
(dtr/dl))(1) d ~  (x) = t. r, .1 for small ~-, (48a) 

possesses the scaling property 

where 

(iii) The forward diffraction peak of the optimal state (47a), (47b) 

(48b) 

]1,2} 
J~. = integer (or half-integer) ~ (1) +/x 2 - 1 (47b) 



1276 Ion 

(iv) Let no r 0 be the number of channels [/~] with/z = v = 0. Then the 
backward peak of the angular distribution of the process (1) described by 
the optimal state (47a), (47b) possesses the scaling property 

1 do- [J l ( ru)]  2 
(do-/dl2)(-1) dO (x) = L r. _1 for small r.  (49a) 

where 

do- no O'el 
- -  (-1) - -  (49b) 
df~ (2sa+l)(2sb+l)  4zr 

and 

ru=2([tlb.)1/2={22~2Itl[ 4~" do- 1} 1/2 
,o-o--7 (1) - 1 (49c) 

Proof The results (i)-(iii) are obtained in Theorem 3 of Ion (1985), 
while the predictions (iv) can be obtained in a straightforward way using 
the definition (20a), the property (34d), and equations (47a), (47b). [] 

Remark 4. Parida (1979) has pointed out that the scaling of the experi- 
mental data in the variable I tlb, is much better than the scaling in the 
variables I tl o-~ and Iltl o-~/o-ol. Figure 1 and Tables la  and lb of Ion (1982a) 
present the experimental data on the logarithmic slopes of the forward 
diffraction peak for the most usual reactions [e.g., pp + pp; PP ~ tiP; K• ~ 
K• zr• + or• in comparison with the optimal prediction 

x' (1)-1] (50) 
b, = 7  Lo-~l dO 

of the optimal state (47a), (47b). The prediction (50) is satisfied experi- 
mentally to a surprising accuracy for all pp, PP, K • 7r• scattering processes 
at all energies higher than 2 GeV. Moreover, from Table 2 of Ion (1982a) 
one can see that the experimental slopes for PP scattering are in agreement 
with the optimal result (50) even in the low-energy region. 

4. CONCLUSIONS 

The present paper is a continuation and a extension of our previous 
results (Ion and Scutaru, 1985; Ion, 1985) in which the two-body scattering 
amplitude is assumed to be an element of a functional Hilbert space defined 
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on [-1,  +1] called the RKHS. We have shown that the RKHSs have many 
special properties, such as (a) autoreproducibility of RK (b) uniqueness of 
RK, (c) uniqueness of RKHS, (d) completeness of the set {KCy ~],y 
[-1,  +1]}, (e) pointwise convergence in RKHSs, (f) positiveness of RK, 
(g) minimum norm of RK, (h) smoothness, and (i) overcompleteness of 
the full set {K~l,y~ [-1,  +1]}. Therefore, defining the optimal state by 
equation (7) [or (23)], we obtain that a number of essential characteristic 
features common to all the optimal states are direct consequence of the 
above RK properties. For any spacific example of optimal states, a corre- 
sponding set of additional properties holds true. 

Our conclusions may be summarized as follows: 

(i) If the scattering amplitude f of the process (1) is an element of the 
finite-dimensional subspace L2(-1, +1), then f can be developed in terms 
of a finite number of partial amplitudes (9) and the RKHS H defined on 
[-1,  +1] possesses the RK (10a), (10b). Then, any cutoff parameter L on 
the total angular momentum allowed in the process (1) must obey the 
bounds (l la),  (12a), (15a), and (32) (Ion and Scutaru, 1985). These bounds 
are saturated if and only if the scattering amplitudes are the optimal states 
(l lb),  ( l lc),  (12b), (12c), (15b), (i5c), and (33a), (33b) (Ion and Scutaru, 
1985), respectively. The scattering phenomena described by these optimal 
states have diffractive patterns very sensitive to the values of the cutoff 
parameter L (e.g., the number of maxima of the differential cross section 
in the entire cos0 interval is L + I  and which at high energies (L>>I) 
possesses the scaling properties (13a)-(13c), (14a)-(14c), (16a)-(16c), (17a), 
(17b), and (35a), (35b) (Ion and Scutaru, 1985). All these results are 
extended to the scattering of particles with arbitrary spins in Section 3. 

(ii) If each helicity amplitude f[~] of the process (1) is an element of 
the RKHS H ["] with the RK (26a), (26b), then any cutoff on the total 
angular momentum must obey the bounds (28), (32a), (35a), (38a), (38b), 
(42), and (46). The equality holds in each of the above inequalities if and 
only i f f  [~l is the optimal state (29), (32b), (32c), (35b), (35c), (39a)-(39c), 
(43a), (43b), (47a), (47b), respectively. The angular distributions of these 
optimal states possess remarkable scaling properties [(33a)-(33c), (33d)- 
(33f), (36a), (36b), (37a), (37b), (40a)-(40d), (41a)-(41c), (44a), (44b), 
(45a)-(45c), (48a), (48b), (49a)-(49c)]. The results (40a), (40b) include in 
a more general and exact form the scaling variables I tl~r~/4~r~el and n t[ ~T 
introduced by many authors (see Remark 2). The scattering phenomena 
described by the optimal amplitudes (39a)-(39d) are s-channel helicity- 
conserving phenomena (see Remark 3). 

(iii) The optimal state dominance as well as the above scaling and 
s-channel helicity conservation laws are experimentally well established 
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(see Ion ,  1982; Pa r ida  1979) for  all  pp, ~p, ~r• K •  sca t te r ing  at all  energ ies  

h ighe r  t h a n  2 GeV.  

Acknowledgments 

It  is a p l ea su re  to t h a n k  Profs.  A b d u s  S a l a m  a n d  L u c i a n o  Ber tocchi  

for  the  hosp i t a l i t y  at the  I n t e r n a t i o n a l  C e n t r e  for  Theore t i ca l  Physics ,  
Tr ies te ,  whe re  par t  o f  this  p a p e r  was wr i t ten .  

REFERENCES 

All, T. S. (1984a). Harmonic analysis on phase space I: Reproducing kernel Hilbert spaces, 
POV-measures and systems of covariance, Concordia University preprint. 

Ali, T. S. (1984b). Quantization using reproducing kernels: Phase space setting and modular 
structure. Paper presented at the XIII International Conference on Differential 
Geometrical Methods in Physics, Skumen, Bulgaria. 

Aronszajn, N. (1943). Proceedings of the Cambridge Philisophical Society, 39, 133. 
Aronszajn, N. (1950). Transactions of the American Mathematical Society, 68, 337. 
Ballam, J., et aL (1970). Physical Review Letters, 24, 960. 
Bargmann, V. (1961). Communications in Pure and Applied Mathematics, 19, 187. 
Bergman, S. (1950). The Kernel Function and Conformal Mapping, Mathematical Surveys No. 

5, American Mathematical Society, Providence, Rhode Island. 
Bergman, S., and Schiffer, M. (1953). Kernel Functions and Elliptic Differential Equations in 

Mathematical Physics, Academic Press, New York. 
Bialas, A., Dabkowski, J., and Van Hove, L. (1970). Nuclear Physics B, 27, 291. 
Buras, A., and Dias de Deus, J. (1974). Nuclear Physics B, 375, 981. 
Carey, A. L. (1977). Communications in Mathematical Physics, 52, 77. 
Carey, A. L. (1978). Reports in Mathematical Physics, 14, 247. 
Cornille, H., and Martin, A. (1976). CERN Report, TH-2130, Talk presented at Orbis Scientae, 

Coral Gables. 
Cutkosky, R. W. (1973). Journal of Mathematical Physics, 14, 1231. 
Dias de Deus, J. (1973). Nuclear Physies B, 159, 231. 
Edmonds, A. R. (1957). Angular Momentum in Quantum Mechanics, Princeton University 

Press, Princeton, New Jersey. 
Einhorn, M. B., and Blankenbecler, R. (1971). Annals of Physics, 67, 470. 
Gilman, F. J. (1970). Physics Letters, 31B, 387. 
Glauber, K. (1963a) Physical Review, 130, 2529. 
Glauber, K. (1963b). Physical Review, 131, 2766. 
Harari, H., and Zarmi, Y. (1970). Physics Letters, 32B, 291. 
Higgins, J. R. (1972). Journal of the London Mathematical Society, 5 (2), 707. 
Higgins, J. R. (1977). Completeness and Basis Properties of Sets of Special Functions, Cambridge 

University Press, Cambridge, England. 
Hille, E. (1972). Rocky Mountain Journal of Mathematics, 2, 321. 
Ion, D. B. (1981a). Revue Roumaine de Physique, 26, 15. 
Ion, D. B. (1981b). Revue Roumaine de Physique, 26, 25. 
Ion, D. B. (1982a). Towards an optimum principle in hadron-hadron scattering, Preprint IPNE, 

FT-211, Bucharest. 



Optimal State Description of Hadron-Hadron Scattering 1279 

Ion, D. B. (1982b). Scaling and s-channel helicity conservation in hadron-hadron scattering, 
Preprint IPNE, FT-218-1982, Bucharest. 

Ion, D. B. (1985). International Journal of Theoretical Physics, 24, 1217. 
Ion, D. B., and Ion-Mihai, R. (1981a). Nuclear Physics A, 360, 400. 
Ion, D. B., and Ion-Mihai, R. (1981b). Experimental evidence for dual diffractive resonances 

in nucleon-nucleus scattering, Preprint IPNE, FT-204-1981, Bucharest. 
Ion, D. B., and Scutaru, H. (1985). International Journal of Theoretical Physics, 24, 355. 
Jacob, M., and Wick G. C. (1959). Annals of Physics, 7, 404. 
Klauder, J. R., and Sudarshan, E. C. G. (1968). Fundamental of Quantum Optics, Benjamin, 

New York. 
Klauder, J. R., and Skagerstam, B. S. (1985). Coherent States--Applications in Physics and 

Mathematical Physics, World Scientific, Singapore. 
Krein, M. G. (1940). Doklady Academii Nauk SSSR, 26, 17. 
Krein, M. G. (1949). Ukrainskii Mathematicheskii Zhurnal, 1, 64. 
K_rein, M. G. (1963). Transactions of the American Mathematical Society, 34(2), 109. 
McKenna, J., and Klauder, J. R. (1964). Journal of Mathematical Physics, 5, 878. 
Meschkowski, A. (1962). Hillertsche Raume mit Kernfunction, Springer, Berlin. 
Okubo, S. (1974). Journal of Mathematical Physics, 15, 963. 
Parida, M. K. (1979). Physical Review D, 19, 150, 164. 
Parzen, E. (1967). Time Series Analysis Papers, Holden-Day, San Francisco. 
Perelomov, A. M. (1972). Communications in Mathematical Physics. 26, 222. 
Prugovecki, E. (1983). Stochastic Quantum Mechanics and Quantum Spacetime, D. Reidel, 

Dordrecht. 
Rarita, W., and Schwed, Ph. (1958). Physical Review, 112, 271. 
Rose, M. E. (1957). Elementary Theory of Angular Momentum, Wiley, New York. 
Schroeck, F. E. (1984). Quantum fields for reproducing kernel Hilbert spaces, Paper presented 

at the 815th Meeting of the American Mathematical Society, San Diego. 
Scutaru, H. (1977). Letters in Mathematical Physics, 2, 101. 
Shapiro, H. S. (1971). Topics in approximation theory, Lecture Notes in Mathematics, No. 

187, Chapter 6, Springer, Berlin. 
Singh, V., and Roy, S. M. (1970). Physical Review D, 1, 2638; Physical Review Letters, 24, 28, 
Wick, G. C. (1943). Attidella Reale Accademia d'Italia Memorie 13, 1203. 
Wilde, D. J., and Beightler, C. S. (1967). Foundations of Optimization, Prentice-Hall, Englewood 

Cliffs, New Jersey. 
Weinert, H. L., ed (1983). Reproducing Kernel Hilbert Spaces: Application in Statistical Signal 

Processing, Hutkinson Ross, Stroudsberg, Pa. 


